Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuromuscul Disord ; 31(9): 859-864, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34419324

RESUMO

Whole exome sequencing (WES), analyzed with GENESIS and WeGET, revealed a homozygous deletion in the C1QBP gene in a patient with progressive external ophthalmoplegia (PEO) and multiple mtDNA deletions. The gene encodes the mitochondria-located complementary 1 Q subcomponent-binding protein, involved in mitochondrial homeostasis. Biallelic mutations in C1QBP cause mitochondrial cardiomyopathy and/or PEO with variable age of onset. Our patient showed only late-onset PEO-plus syndrome without overt cardiac involvement. Available data suggest that early-onset cardiomyopathy variants localize in important structural domains and PEO-plus variants in the coiled-coil region. Our patient demonstrates that C1QBP mutations should be considered in individuals with PEO with or without cardiomyopathy.


Assuntos
Proteínas de Transporte/genética , Sequenciamento do Exoma , Proteínas Mitocondriais/genética , Oftalmoplegia Externa Progressiva Crônica/genética , Adulto , DNA Mitocondrial/genética , Feminino , Homozigoto , Humanos , Mitocôndrias/genética , Mutação , Deleção de Sequência
2.
Front Pharmacol ; 11: 263, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32231567

RESUMO

The clinical management of head and neck squamous cell carcinoma (HNSCC) commonly involves chemoradiotherapy, but recurrences often occur that are associated with radioresistance. Using human SQD9 laryngeal squamous cell carcinoma cancer cells as a model, we aimed to identify metabolic changes associated with acquired radioresistance. In a top-down approach, matched radiosensitive and radioresistant SQD9 cells were generated and metabolically compared, focusing on glycolysis, oxidative phosphorylation (OXPHOS) and ROS production. The cell cycle, clonogenicity, tumor growth in mice and DNA damage-repair were assessed. Mitochondrial DNA (mtDNA) was sequenced. In a bottom-up approach, matched glycolytic and oxidative SQD9 cells were generated using FACS-sorting, and tested for their radiosensitivity/radioresistance. We found that acquired radioresistance is associated with a shift from a glycolytic to a more oxidative metabolism in SQD9 cells. The opposite was also true, as the most oxidative fraction isolated from SQD9 wild-type cells was also more radioresistant than the most glycolytic fraction. However, neither reduced hexokinase expression nor OXPHOS were directly responsible for the radioresistant phenotype. Radiosensitive and radioresistant cells had similar proliferation rates and were equally efficient for ATP production. They were equally sensitive to redox stress and had similar DNA damage repair, but radioresistant cells had an increased number of mitochondria and a higher mtDNA content. Thus, an oxidative switch is associated with but is not responsible for acquired radioresistance in human SQD9 cells. In radioresistant cells, more abundant and fitter mitochondria could help to preserve mitochondrial functions upon irradiation.

3.
Front Genet ; 9: 400, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30369941

RESUMO

Mitochondrial disorders, characterized by clinical symptoms and/or OXPHOS deficiencies, are caused by pathogenic variants in mitochondrial genes. However, pathogenic variants in some of these genes can lead to clinical manifestations which overlap with other neuromuscular diseases, which can be caused by pathogenic variants in non-mitochondrial genes as well. Mitochondrial pathogenic variants can be found in the mitochondrial DNA (mtDNA) or in any of the 1,500 nuclear genes with a mitochondrial function. We have performed a two-step next-generation sequencing approach in a cohort of 117 patients, mostly children, in whom a mitochondrial disease-cause could likely or possibly explain the phenotype. A total of 86 patients had a mitochondrial disorder, according to established clinical and biochemical criteria. The other 31 patients had neuromuscular symptoms, where in a minority a mitochondrial genetic cause is present, but a non-mitochondrial genetic cause is more likely. All patients were screened for pathogenic variants in the mtDNA and, if excluded, analyzed by whole exome sequencing (WES). Variants were filtered for being pathogenic and compatible with an autosomal or X-linked recessive mode of inheritance in families with multiple affected siblings and/or consanguineous parents. Non-consanguineous families with a single patient were additionally screened for autosomal and X-linked dominant mutations in a predefined gene-set. We identified causative pathogenic variants in the mtDNA in 20% of the patient-cohort, and in nuclear genes in 49%, implying an overall yield of 68%. We identified pathogenic variants in mitochondrial and non-mitochondrial genes in both groups with, obviously, a higher number of mitochondrial genes affected in mitochondrial disease patients. Furthermore, we show that 31% of the disease-causing genes in the mitochondrial patient group were not included in the MitoCarta database, and therefore would have been missed with MitoCarta based gene-panels. We conclude that WES is preferable to panel-based approaches for both groups of patients, as the mitochondrial gene-list is not complete and mitochondrial symptoms can be secondary. Also, clinically and genetically heterogeneous disorders would require sequential use of multiple different gene panels. We conclude that WES is a comprehensive and unbiased approach to establish a genetic diagnosis in these patients, able to resolve multi-genic disease-causes.

4.
Genetics ; 204(4): 1423-1431, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27770035

RESUMO

Of all pathogenic mitochondrial DNA (mtDNA) mutations in humans, ∼25% is de novo, although the occurrence in oocytes has never been directly assessed. We used next-generation sequencing to detect point mutations directly in the mtDNA of 3-15 individual mature oocytes and three somatic tissues from eight zebrafish females. Various statistical and biological filters allowed reliable detection of de novo variants with heteroplasmy ≥1.5%. In total, we detected 38 de novo base substitutions, but no insertions or deletions. These 38 de novo mutations were present in 19 of 103 mature oocytes, indicating that ∼20% of the mature oocytes carry at least one de novo mutation with heteroplasmy ≥1.5%. This frequency of de novo mutations is close to that deducted from the reported error rate of polymerase gamma, the mitochondrial replication enzyme, implying that mtDNA replication errors made during oogenesis are a likely explanation. Substantial variation in the mutation prevalence among mature oocytes can be explained by the highly variable mtDNA copy number, since we previously reported that ∼20% of the primordial germ cells have a mtDNA copy number of ≤73 and would lead to detectable mutation loads. In conclusion, replication errors made during oogenesis are an important source of de novo mtDNA base substitutions and their location and heteroplasmy level determine their significance.


Assuntos
Replicação do DNA , DNA Mitocondrial/genética , Dosagem de Genes , Mutação , Oócitos/metabolismo , Oogênese , Animais , Feminino , Taxa de Mutação , Oócitos/citologia , Peixe-Zebra
5.
Mol Genet Metab ; 114(3): 388-96, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25542617

RESUMO

Success rates for genomic analyses of highly heterogeneous disorders can be greatly improved if a large cohort of patient data is assembled to enhance collective capabilities for accurate sequence variant annotation, analysis, and interpretation. Indeed, molecular diagnostics requires the establishment of robust data resources to enable data sharing that informs accurate understanding of genes, variants, and phenotypes. The "Mitochondrial Disease Sequence Data Resource (MSeqDR) Consortium" is a grass-roots effort facilitated by the United Mitochondrial Disease Foundation to identify and prioritize specific genomic data analysis needs of the global mitochondrial disease clinical and research community. A central Web portal (https://mseqdr.org) facilitates the coherent compilation, organization, annotation, and analysis of sequence data from both nuclear and mitochondrial genomes of individuals and families with suspected mitochondrial disease. This Web portal provides users with a flexible and expandable suite of resources to enable variant-, gene-, and exome-level sequence analysis in a secure, Web-based, and user-friendly fashion. Users can also elect to share data with other MSeqDR Consortium members, or even the general public, either by custom annotation tracks or through the use of a convenient distributed annotation system (DAS) mechanism. A range of data visualization and analysis tools are provided to facilitate user interrogation and understanding of genomic, and ultimately phenotypic, data of relevance to mitochondrial biology and disease. Currently available tools for nuclear and mitochondrial gene analyses include an MSeqDR GBrowse instance that hosts optimized mitochondrial disease and mitochondrial DNA (mtDNA) specific annotation tracks, as well as an MSeqDR locus-specific database (LSDB) that curates variant data on more than 1300 genes that have been implicated in mitochondrial disease and/or encode mitochondria-localized proteins. MSeqDR is integrated with a diverse array of mtDNA data analysis tools that are both freestanding and incorporated into an online exome-level dataset curation and analysis resource (GEM.app) that is being optimized to support needs of the MSeqDR community. In addition, MSeqDR supports mitochondrial disease phenotyping and ontology tools, and provides variant pathogenicity assessment features that enable community review, feedback, and integration with the public ClinVar variant annotation resource. A centralized Web-based informed consent process is being developed, with implementation of a Global Unique Identifier (GUID) system to integrate data deposited on a given individual from different sources. Community-based data deposition into MSeqDR has already begun. Future efforts will enhance capabilities to incorporate phenotypic data that enhance genomic data analyses. MSeqDR will fill the existing void in bioinformatics tools and centralized knowledge that are necessary to enable efficient nuclear and mtDNA genomic data interpretation by a range of shareholders across both clinical diagnostic and research settings. Ultimately, MSeqDR is focused on empowering the global mitochondrial disease community to better define and explore mitochondrial diseases.


Assuntos
Bases de Dados Genéticas , Genoma Mitocondrial , Interface Usuário-Computador , Biologia Computacional , Exoma , Feminino , Genômica , Humanos , Disseminação de Informação , Internet , Masculino , Doenças Mitocondriais/genética , Fenótipo , Software
6.
Bioinformatics ; 31(8): 1310-2, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25505086

RESUMO

MOTIVATION: All current mitochondrial haplogroup classification tools require variants to be detected from an alignment with the reference sequence and to be properly named according to the canonical nomenclature standards for describing mitochondrial variants, before they can be compared with the haplogroup determining polymorphisms. With the emergence of high-throughput sequencing technologies and hence greater availability of mitochondrial genome sequences, there is a strong need for an automated haplogroup classification tool that is alignment-free and agnostic to reference sequence. RESULTS: We have developed a novel mitochondrial genome haplogroup-defining algorithm using a k-mer approach namely Phy-Mer. Phy-Mer performs equally well as the leading haplogroup classifier, HaploGrep, while avoiding the errors that may occur when preparing variants to required formats and notations. We have further expanded Phy-Mer functionality such that next-generation sequencing data can be used directly as input. AVAILABILITY AND IMPLEMENTATION: Phy-Mer is publicly available under the GNU Affero General Public License v3.0 on GitHub (https://github.com/danielnavarrogomez/phy-mer). CONTACT: Xiaowu_Gai@meei.harvard.edu SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Algoritmos , DNA Mitocondrial/genética , Variação Genética/genética , Haplótipos/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , Humanos , Software
7.
Genes Chromosomes Cancer ; 51(7): 631-43, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22419448

RESUMO

Twenty percent of breast cancers exhibit amplification or overexpression of ERBB2/neu and a poor prognosis. As the susceptibility genes controlling ERBB2 tumorgenesis are unknown, in a genetic mapping project we crossed transgenic mice expressing the neu oncogene under control of MMTV promoter with recombinant congenic (RC) strains, which provided a high mapping power. RC strains differed considerably in tumor latency (P = 0.0002), suggesting a strong genetic control of tumor development. Linkage analysis in neu-transgene carrying F2 hybrids between the most susceptible and most resistant RC strain revealed three mammary tumor susceptibility (Mts) loci with main effects, Mts1 (chr. 4), Mts2 (chr. 10), Mts3 (chr. 19), and two interacting loci Mts4 (chr.6) and Mts5 (chr. 8), significantly affecting mammary tumor latency. Suggestive significance levels indicated control of tumor numbers by Mts1 alone and in interaction with Mts5, and by two additional interacting loci on chromosomes 1 and 8. These loci combined explain to a large extent the tumor latency and number in individual F2 mouse. We also identified a suggestive locus on chromosome 17 controls metastasis to the lung. The loci Mts1, Mts1b, and Mts3 are located in the Naad4-4,5 and Naad19-2 LOH-regions of neu-induced mammary tumors, corresponding to the frequent human breast cancer LOH-regions 1p34/1p36, and 10q25, respectively. These results expand the knowledge of ERBB2 tumorigenesis and point to a combined control of specific tumor phenotypes by germ-line polymorphisms and somatic alterations.


Assuntos
Genes erbB-2 , Loci Gênicos , Neoplasias Mamárias Experimentais/genética , Animais , Mapeamento Cromossômico , Feminino , Predisposição Genética para Doença , Estimativa de Kaplan-Meier , Neoplasias Pulmonares/secundário , Masculino , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Metástase Neoplásica
8.
PLoS Negl Trop Dis ; 5(6): e1173, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21666791

RESUMO

BACKGROUND: Trypanosoma brucei brucei infects livestock, with severe effects in horses and dogs. Mouse strains differ greatly in susceptibility to this parasite. However, no genes controlling these differences were mapped. METHODS: We studied the genetic control of survival after T. b. brucei infection using recombinant congenic (RC) strains, which have a high mapping power. Each RC strain of BALB/c-c-STS/A (CcS/Dem) series contains a different random subset of 12.5% genes from the parental "donor" strain STS/A and 87.5% genes from the "background" strain BALB/c. Although BALB/c and STS/A mice are similarly susceptible to T. b. brucei, the RC strain CcS-11 is more susceptible than either of them. We analyzed genetics of survival in T. b. brucei-infected F(2) hybrids between BALB/c and CcS-11. CcS-11 strain carries STS-derived segments on eight chromosomes. They were genotyped in the F(2) hybrid mice and their linkage with survival was tested by analysis of variance. RESULTS: We mapped four Tbbr (Trypanosoma brucei brucei response) loci that influence survival after T. b. brucei infection. Tbbr1 (chromosome 3) and Tbbr2 (chromosome 12) have effects on survival independent of inter-genic interactions (main effects). Tbbr3 (chromosome 7) influences survival in interaction with Tbbr4 (chromosome 19). Tbbr2 is located on a segment 2.15 Mb short that contains only 26 genes. CONCLUSION: This study presents the first identification of chromosomal loci controlling susceptibility to T. b. brucei infection. While mapping in F(2) hybrids of inbred strains usually has a precision of 40-80 Mb, in RC strains we mapped Tbbr2 to a 2.15 Mb segment containing only 26 genes, which will enable an effective search for the candidate gene. Definition of susceptibility genes will improve the understanding of pathways and genetic diversity underlying the disease and may result in new strategies to overcome the active subversion of the immune system by T. b. brucei.


Assuntos
Imunidade Inata/genética , Doenças dos Roedores/genética , Doenças dos Roedores/imunologia , Trypanosoma brucei brucei/imunologia , Trypanosoma brucei brucei/patogenicidade , Tripanossomíase Africana/genética , Tripanossomíase Africana/imunologia , Animais , Mapeamento Cromossômico , Cruzamentos Genéticos , Feminino , Loci Gênicos , Genótipo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Análise de Sobrevida
9.
PLoS One ; 6(2): e14727, 2011 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-21390212

RESUMO

Genetic predisposition controlled by susceptibility quantitative trait loci (QTLs) contributes to a large proportion of common cancers. Studies of genetics of cancer susceptibility, however, did not address systematically the relationship between susceptibility to cancers in different organs. We present five sets of data on genetic architecture of colon and lung cancer susceptibility in mice, humans and rats. They collectively show that the majority of genes for colon and lung cancer susceptibility are linked pair-wise and are likely identical or related. Four CcS/Dem recombinant congenic strains, each differing from strain BALB/cHeA by a different small random subset of ±12.5% of genes received from strain STS/A, suggestively show either extreme susceptibility or extreme resistance for both colon and lung tumors, which is unlikely if the two tumors were controlled by independent susceptibility genes. Indeed, susceptibility to lung cancer (Sluc) loci underlying the extreme susceptibility or resistance of such CcS/Dem strains, mapped in 226 (CcS-10 x CcS-19)F2 mice, co-localize with susceptibility to colon cancer (Scc) loci. Analysis of additional Sluc loci that were mapped in OcB/Dem strains and Scc loci in CcS/Dem strains, respectively, shows their widespread pair-wise co-localization (P  =  0.0036). Finally, the majority of published human and rat colon cancer susceptibility genes map to chromosomal regions homologous to mouse Sluc loci. 12/12 mouse Scc loci, 9/11 human and 5/7 rat colon cancer susceptibility loci are close to a Sluc locus or its homologous site, forming 21 clusters of lung and colon cancer susceptibility genes from one, two or three species. Our data shows that cancer susceptibility QTLs can have much broader biological effects than presently appreciated. It also demonstrates the power of mouse genetics to predict human susceptibility genes. Comparison of molecular mechanisms of susceptibility genes that are organ-specific and those with trans-organ effects can provide a new dimension in understanding individual cancer susceptibility.


Assuntos
Adenoma/genética , Carcinoma/genética , Neoplasias do Colo/genética , Ligação Genética , Neoplasias Pulmonares/genética , Adenoma/patologia , Animais , Carcinoma/patologia , Mapeamento Cromossômico , Neoplasias do Colo/patologia , Modelos Animais de Doenças , Feminino , Predisposição Genética para Doença/genética , Humanos , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Gravidez , Ratos , Especificidade da Espécie
10.
Twin Res Hum Genet ; 11(5): 505-16, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18828733

RESUMO

Insulin resistance and obesity are underlying causes of type 2 diabetes and therefore much interest is focused on the potential genes involved. A series of anthropometric and metabolic characteristic were measured in 240 MZ and 112 DZ twin pairs recruited from the East Flanders Prospective Twin Survey. Microsatellite markers located close to ABCC8, ADIPOQ, GCK, IGF1, IGFBP1, INSR, LEP, LEPR, PPARgamma and the RETN gene were genotyped. Univariate single point variance components linkage analyses were performed using two methods: (1) the standard method, only comprising the phenotypic and genotypic data of the DZ twin pairs and (2) the extended method, also incorporating the phenotypic data of the MZ twin pairs. Suggestive linkages (LOD > 1) were observed between the ABCC8 marker and waist-to-hip ratio and HDL-cholesterol levels. Both markers flanking ADIPOQ showed suggestive linkage with triglycerides levels, the upstream marker also with body mass and HDL-cholesterol levels. The IGFBP1 marker showed suggestive linkage with fat mass, fasting insulin and leptin levels and the LEP marker showed suggestive linkage with birth weight. This study suggests that DNA variants in ABCC8, ADIPOQ, IGFBP1 and LEP gene region may predispose to type 2 diabetes. In addition, the two methods used to perform linkage analyses yielded similar results. This was however not the case for birth weight where chorionicity seems to be an important confounder.


Assuntos
Antropometria , Metabolismo dos Carboidratos/genética , Diabetes Mellitus Tipo 2/genética , Metabolismo dos Lipídeos/genética , Gêmeos Dizigóticos/genética , Gêmeos Monozigóticos/genética , Adulto , Bélgica , Feminino , Ligação Genética , Genótipo , Humanos , Masculino , Repetições de Microssatélites/genética , Estudos Prospectivos
11.
Mol Hum Reprod ; 14(3): 157-68, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18204071

RESUMO

Besides the established selection criteria based on embryo morphology and blastomere number, new parameters for embryo viability are needed to improve the clinical outcome of IVF and more particular of elective single-embryo transfer. Genome-wide gene expression in cumulus cells was studied, since these cells surround the oocyte inside the follicle and therefore possibly reflect oocyte developmental potential. Early cleavage (EC) was chosen as a parameter for embryo viability. Gene expression in cumulus cells from eight oocytes resulting in an EC embryo (EC-CC; n = 8) and from eight oocytes resulting in a non-EC (NEC) embryo (NEC-CC; n = 8) was analysed using microarrays (n = 16). A total of 611 genes were differentially expressed (P < 0.01), mainly involved in cell cycle, angiogenesis, apoptosis, epidermal growth factor, fibroblast growth factor and platelet-derived growth factor signalling, general vesicle transport and chemokine and cytokine signalling. Of the 25 selected differentially expressed genes analysed by quantitative real-time PCR 15 (60%) genes could be validated in the original samples. Of these 8 (53%) could also be validated in 24 (12-EC-CC and 12 NEC-CC) extra independent samples. The most differentially expressed genes among these were CCND2, CXCR4, GPX3, CTNND1 DHCR7, DVL3, HSPB1 and TRIM28, which probably point to hypoxic conditions or a delayed oocyte maturation in NEC-CC samples. This opens up perspectives for new molecular embryo or oocyte selection parameters which might also be useful in countries where the selection has to be made at the oocyte stage before fertilization instead of at the embryonic stage.


Assuntos
Células do Cúmulo/metabolismo , Embrião de Mamíferos/metabolismo , Perfilação da Expressão Gênica , Sobrevivência Celular/genética , Células Cultivadas , Células do Cúmulo/citologia , Embrião de Mamíferos/citologia , Feminino , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
12.
Nat Genet ; 31(3): 295-300, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12089527

RESUMO

Only a small proportion of cancers result from familial cancer syndromes with Mendelian inheritance. Nonfamilial, 'sporadic' cancers, which represent most cancer cases, also have a significant hereditary component, but the genes involved have low penetrance and are extremely difficult to detect. Therefore, mapping and cloning of quantitative trait loci (QTLs) for cancer susceptibility in animals could help identify homologous genes in humans. Several cancer-susceptibility QTLs have been mapped in mice and rats, but none have been cloned so far. Here we report the positional cloning of the mouse gene Scc1 (Susceptibility to colon cancer 1) and the identification of Ptprj, encoding a receptor-type protein tyrosine phosphatase, as the underlying gene. In human colon, lung and breast cancers, we show frequent deletion of PTPRJ, allelic imbalance in loss of heterozygosity (LOH) and missense mutations. Our data suggest that PTPRJ is relevant to the development of several different human cancers.


Assuntos
Adenocarcinoma/genética , Proteínas de Ciclo Celular/genética , Neoplasias do Colo/genética , Proteínas Tirosina Fosfatases/genética , Adenocarcinoma/patologia , Animais , Neoplasias da Mama/genética , Proteínas de Ciclo Celular/química , Proteínas Cromossômicas não Histona , Mapeamento Cromossômico , Neoplasias do Colo/induzido quimicamente , Dimetilidrazinas , Deleção de Genes , Inativação Gênica , Marcadores Genéticos , Humanos , Perda de Heterozigosidade , Neoplasias Pulmonares/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos , Proteínas Nucleares , Fosfoproteínas , Polimorfismo Genético , Característica Quantitativa Herdável , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores , Proteínas de Saccharomyces cerevisiae , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...